Ray-Thermal-Structural Coupled Analysis of Parabolic Trough Solar Collector System

نویسندگان

  • Yong Shuai
  • Fu-Qiang Wang
  • Xin-Lin Xia
  • He-Ping Tan
چکیده

An effective approach to sustainable energy is the utilization of solar energy. The parabolic trough collector with central receiver is one of the most suitable systems for solar power generation. A type of concentrating solar collector that uses U-shaped troughs to concentrate sunlight onto a receiver tube, containing a working fluid such as water or oil, which is positioned along the focal line of the trough. Sometimes a transparent glass tube envelops the receiver tube to reduce heat loss. Parabolic troughs often use single-axis or dual-axis tracking. Temperatures at the receiver can reach 400°C. The heated working fluid may be used for medium temperature space or process heat, or to operate a steam turbine for power or electricity generation. As designed to operate with concentrated heat fluxes, the receiver will be subjected to the high thermal stresses which may cause the failure of receivers. The thermal stress of receiver or tube heat exchangers has drawn many researchers’ attention. Numerous studies have been carried out to investigate the temperature distributions and thermal stress fields of receiver or tube heat exchangers. A numerical analysis had been conducted by Chen [1] to study the effect on temperature distributions of using porous material for the receiver. Experiments were conducted by Fend [2] to research the temperature distributions on the volumetric receivers used two novel porous materials. A finite element analysis was conducted by Islamoglu [3] to study the temperature distribution and the thermal stress fields on the tube heat exchanger using the SiC material. To reduce the thermal stresses, Agrafiotis [4] employed porous monolithic multi-channeled SiC honeycombs as the material for an open volumetric receiver. Low cycle fatigue test of the receiver materials was conducted at different temperatures by Lata et al. [5], the results showed that the high nickel alloys had excellent thermo-mechanical properties compared to the austenitic stainless steel. Almanza and Flores [6, 7] proposed a bimetallic Cu-Fe type receiver, and the experimental test results showed that, when operated at low pressure, the bimetallic Cu-Fe type receiver had a lower thermal gradient and less thermal stress strain than the steel receiver. In Steven’s study [8], the receiver is divided into 16 sections, and the average solar radiation heat flux of each section is calculated. The average heat flux is used as boundary condition for each corresponding section in the thermal analysis model. This method is fairly straightforward and simple, but the deviations generated during the heat flux transformation process are enormous.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical analysis of performance of solar parabolic trough collector with Cu-Water nanofluid

In the present work the effect of Cu-Water nanofluid, as heat transfer fluid, on the performance of a parabolic solar collector was studied numerically. The temperature field, thermal efficiency, mean-outlet temperatures have been evaluated and compared for the conventional parabolic collectors and nanofluid based collectors. Further, the effect of various parameters such as fluid velocity, vol...

متن کامل

Numerical analysis of performance of solar parabolic trough collector with Cu-Water nanofluid

In the present work the effect of Cu-Water nanofluid, as heat transfer fluid, on the performance of a parabolic solar collector was studied numerically. The temperature field, thermal efficiency, mean-outlet temperatures have been evaluated and compared for the conventional parabolic collectors and nanofluid based collectors. Further, the effect of various parameters such as fluid velocity, vol...

متن کامل

Experimental Investigation on the Effect of Partially Metal Foam inside the Absorber of Parabolic Trough Solar Collector

In the present work the efficiency of a solar parabolic trough has been investigated experimentality. parabolic trough solar collector constitute a proven source of thermal energy for industrial process heat and power genaration. The impact of  using the partially porous media in the absorber on the efficiency of PTC (parabolic trough collector) has been investigated. The porosity of copper foa...

متن کامل

Thermodynamic diagnosis of a novel solar-biomass based multi-generation system including potable water and hydrogen production

In this study, a new proposed multi-generation system as a promising integrated energy conversion system is studied, and its performance is investigated thermodynamically. The system equipped with parabolic trough collectors and biomass combustor to generate electricity, heating and cooling loads, hydrogen and potable water. A double effect absorption chiller to provide cooling demand, a proton...

متن کامل

An Experimental Study on Evacuated Tube Solar Collector using Therminol D-12 as Heat Transfer Fluid Coupled with Parabolic Trough

An evacuated tube solar collector using therminol D-12 as heat transfer fluid coupled with parabolic trough is studied in this paper. An experimental set-up was constructed to study the performance of evacuated tube collector with therminol D-12 as heat transfer fluid. The parabolic trough is coupled with evacuated tube collector for better performance. In the traditional solar collectors water...

متن کامل

Manufacturing a trough parabolic solar collector and predicting its theoretical performance

The aim of this research was manufacturing a parabolic trough solar collector in which reflecting surface is made of mirror steel rather than usual mirror and also predicting its theoretical performance.by adjusting planar ⩝ -shaped structures parallel to each other and welding them together, the main supporting structure was assembled and a parabolic-shape Teflon arc was installed in the apert...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012